
Documentation for AutoSW Topic 5: Numerical
integration methods

Mia Kronner Matr. 22201686

January 27, 2026

1

Contents

1 Declaration of self reliance 3

2 Graphical representation of the software design 4

3 Theoretical explanation of the relationships 5
3.1 "integrate.h": . 6
3.2 "integrate.c": . 7

3.2.1 Common argument checking (bad_args) 9
3.2.2 Midpoint / rectangle method (midpoint) 9
3.2.3 Trapezoid method (trapezoid) 10
3.2.4 Simpson 1/3 method (simpson) 11

3.3 Performance-oriented aspects (embedded focus) 12

4 Documentation of the reference examples used for testing 13
4.1 Test integrand design . 14
4.2 Test runner (run_one) . 15
4.3 Reference examples in main() 16

4.3.1 Results . 22

5 Bibliography 23

2

1 Declaration of self reliance

I hereby declare that I have written this thesis independently in accordance
with § 35 para. 7 RaPO (Framework Examination Regulations for Univer-
sities of Applied Sciences in Bavaria, BayRS 2210-4-1-4-1-WFK), have not
submitted it elsewhere for examination purposes, have not used any sources
or aids other than those indicated, and have marked all direct and indirect
quotations as such.

3

2 Graphical representation of the software design

4

3 Theoretical explanation of the relationships

5

3.1 "integrate.h":

Interface for integrate.c Module. Here is declared:

• a void float function pointer for the mathematical function which is to
be integrated integrand_f.

• a typedef which contains the possible return values for the three inte-
gration functions integ_status_t

• the three integration functions midpoint (rectangle midpoint method),
trapezoid (trapezoid method), and simpson (simpson 1/3 method)

– they each take a integrand function integrand_f f, its context
as a void pointer void *ctx, the limits a and b and the number
of intevals n

#ifndef INTEGRATE_H_
#define INTEGRATE_H_

#include <stddef.h>

typedef float (*integrand_f)(float x, void *ctx);

typedef enum
{

INTEG_OK = 0,
INTEG_ERR_BAD_ARGS = -1,
INTEG_ERR_N_EVEN_REQUIRED = -2

} integ_status_t;

integ_status_t midpoint(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

integ_status_t trapezoid(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

integ_status_t simpson(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

#endif // INTEGRATE_H_

6

3.2 "integrate.c":

Implements the three numerical integration algorithms (midpoint/rectangle,
trapezoid, Simpson 1/3) behind the public interface from integrate.h, in-
cluding argument validation and method-specific constraints.

The file includes integrate.h and provides the concrete implementations
of midpoint(), trapezoid(), and simpson(), each computing an approxi-
mation of

I =

∫ b

a
f(x)dx

by sampling the integrand at specific points and summing weighted contri-
butions.

All three functions follow the same reusable calling convention: function
pointer integrand_f f, a generic context pointer ctx, integration bounds
a, b, subinterval count n, and output pointer out.

static inline int bad_args(integrand_f f, float *a, float *b, unsigned *n,
float *out)

{
return (f == NULL || out == NULL || *n == 0u || !(*b > *a));

}

integ_status_t midpoint(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
/*check if all necessary parameters have been given */
if (bad_args(f, &a, &b, &n, out))

return INTEG_ERR_BAD_ARGS;

float sum = 0.0f;
float fx = 0.0f;

/*intervall width h: */
const float h = (b - a) / (float)n;
float x = a + 0.5f * h;

for (unsigned i = 0; i < n; ++i)
{

fx = f(x, ctx);

7

sum = sum + fx;
x = x + h;

}

*out = sum * h;
return INTEG_OK;

}

integ_status_t trapezoid(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
if (bad_args(f, &a, &b, &n, out))
{

return INTEG_ERR_BAD_ARGS;
}

const float h = (b - a) / (float)n;
float sum = 0.5f * (f(a, ctx) + f(b, ctx));

float x = a + h;
for (unsigned i = 1; i < n; ++i)
{

sum = sum + f(x, ctx);
x = x + h;

}

*out = sum * h;
return INTEG_OK;

}

integ_status_t simpson(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
if (bad_args(f, &a, &b, &n, out))
{

return INTEG_ERR_BAD_ARGS;
}
if (n & 1u) /*n must be even*/
{

return INTEG_ERR_N_EVEN_REQUIRED;

8

}

float sum_odd = 0.0f;
float sum_even = 0.0f;
const float h = (b - a) / (float)n;

float x = a + h;
for (unsigned i = 1; i < n; ++i)
{

const float fx = f(x, ctx);
if (i & 1u)

sum_odd = sum_odd + fx;
else

sum_even = sum_even + fx;
x = x + h;

}

*out =
(h / 3.0f) * (f(a, ctx) + 4.0f * sum_odd + 2.0f * sum_even + f(b, ctx));

return INTEG_OK;
}

3.2.1 Common argument checking (bad_args)

A shared internal helper bad_args() is implemented as static inline to
reduce call overhead and to allow the compiler to inline it for performance
on embedded targets.

It returns an error condition if f == NULL, out == NULL, n == 0 or
the interval is invalid (the code checks b > a). If bad_args() reports in-
valid inputs, each public integration function returns INTEG_ERR_BAD_ARGS
immediately.

3.2.2 Midpoint / rectangle method (midpoint)

1. Mathematical idea

The interval [a,b] is split into n subintervals of equal width

h = (b− a)/n

, and each subinterval [xi,xi+1] is approximated by a rectangle whose

9

height is the function value at the midpoint

xi+ h/2

. The Formula is as follows: [1]

≈ h
n∑

i=1

f(xi−1 + xi/2)

2. Implementation details The code computes h, initializes the first mid-
point x = a + 0.5fh, then loops exactly n times, accumulating sum =
sum + f(x, ctx) and stepping x = x + h.

Finally, the result is written as out = sum * h and the function returns
INTEG_OK.

3.2.3 Trapezoid method (trapezoid)

1. Mathematical idea

Each subinterval is approximated by a trapezoid formed by the points

(xi, f(xi))

and
(xi+ 1, f(xi+ 1))

, giving the composite trapezoid rule.

This corresponds to the standard weighted sum [2]

= h/2(f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn))

2. Implementation details

The code computes h, then initializes sum = 0.5f*(f(a,ctx)+f(b,ctx))
to apply the half-weight to the endpoints. It iterates from the first in-
terior node x = a + h for i = 1..n-1, adds each interior sample once
(sum = sum + f(x,ctx)), then scales by h via *out = sum * h.

10

3.2.4 Simpson 1/3 method (simpson)

1. Mathematical idea

Simpson’s 1/3 rule approximates the function by piecewise quadratic
polynomials over pairs of subintervals, which leads to alternating weights
4 and 2 for interior points.

The composite Simpson rule requires an even number of subintervals
nn so that the domain can be grouped into

n/2

pairs. The formula is as such: [3]

≈ (h/3)[f(x0) + 4f(x1) + 2f(x2) + . . . 2f(xn−2) + 4f(xn−1) + f(xn)]

2. Implementation details and constraint handling

After basic argument validation, the function checks if (n & 1u) and
returns INTEG_ERR_N_EVEN_REQUIRED if n is odd, enforcing the “even
n” requirement from the interface contract.

It then loops over the interior nodes i=1..n-1 and accumulates two
partial sums: sum_odd for odd indices (weight 4) and sum_even for
even indices (weight 2). The final formula implemented is
out = (h/3)(f(a)+4*sum_odd+2*sum_even+f(b)), which matches the
documented Simpson weighting scheme.

11

3.3 Performance-oriented aspects (embedded focus)

The design avoids dynamic allocation and uses a caller-provided output
pointer (float *out), which is predictable and typical for embedded C mod-
ules.

The ctx pointer allows passing coefficients/parameters without global
variables, enabling reuse for many function types while keeping the integrator
code generic. Using static inline for bad_args and keeping loop bodies
simple (incrementing x by h rather than recomputing from scratch) supports
compiler optimization and reduces runtime overhead.

When checking for evenness of n the simpson function uses & u1 instead
of % 2. It is not possible to substitue a /2 for a >>1 for the float variable
type. Such tricks can not have been used for any values with the float type.

12

4 Documentation of the reference examples used
for testing

"main.c" is a small command-line test application that demonstrates how to
use the reusable integration module by defining example integrand functions,
calling all three numerical methods, and printing absolute errors against
known exact results.

The application includes integrate.h and uses standard library func-
tionality (printing and absolute error via fabsf) to compare the numeric
results to a known reference (“exact”) value. Its purpose is not to be a
generic framework, but a compact test harness that exercises the module
API and makes method limitations visible at runtime (e.g., Simpson’s even-
n requirement).

13

4.1 Test integrand design

Parameterized quadratic via context pointer
A small struct quad_t stores coefficients a2, a1, a0 for a quadratic poly-

nomial
f(x) = a2x

2 + a1x+ a0

, showing how the integrator’s void *ctx can carry user-defined parameters
without globals. The function f_quad(float x, void ctx) casts ctx to
const quad_t and evaluates the polynomial, matching the generic integrand_f
interface expected by the integration module.

14

4.2 Test runner (run_one)

The helper run_one(...) calls midpoint, trapezoid, and simpson with
the same function, bounds, and number of subintervals, storing results into
three local floats (r, t, s). It prints the integration problem setup (function
name, bounds, n), prints the exact reference value, and prints each method’s
absolute error using fabsf(result - exact) for a direct precision compar-
ison. Simpson’s status return is checked: if simpson returns INTEG_OK, the
Simpson result/error is printed, otherwise a message is printed indicating it
was not computed because n must be even.

15

4.3 Reference examples in main()

Four concrete test cases are instantiated using quad_t coefficients and passed
to run_one. They have been chosen in such a way that many edge cases are
accounted for.

Example 1: q
f(x) = x2

on [0,1] with exact integral 1/3 and n=10

Example 2: q2
f(x) = −x2 + 3x+ 50

on [-3,15] with exact integral 90 and n=22

16

Example 3: q3
f(x) = −9x2 + 3x− 100

on [12,15] with exact integral -5119.5 and n=2

Example 4: q4
f(x) = 6x2 − 10x

17

on [-50,-5] with exact integral 262125 and n=6u

#ifndef INTEGRATE_H_
#define INTEGRATE_H_

#include <stddef.h>

typedef float (*integrand_f)(float x, void *ctx);

typedef enum
{

INTEG_OK = 0,
INTEG_ERR_BAD_ARGS = -1,
INTEG_ERR_N_EVEN_REQUIRED = -2

} integ_status_t;

integ_status_t midpoint(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

integ_status_t trapezoid(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

integ_status_t simpson(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out);

18

#endif // INTEGRATE_H_

static inline int bad_args(integrand_f f, float *a, float *b, unsigned *n,
float *out)

{
return (f == NULL || out == NULL || *n == 0u || !(*b > *a));

}

integ_status_t midpoint(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
/*check if all necessary parameters have been given */
if (bad_args(f, &a, &b, &n, out))

return INTEG_ERR_BAD_ARGS;

float sum = 0.0f;
float fx = 0.0f;

/*intervall width h: */
const float h = (b - a) / (float)n;
float x = a + 0.5f * h;

for (unsigned i = 0; i < n; ++i)
{

fx = f(x, ctx);
sum = sum + fx;
x = x + h;

}

*out = sum * h;
return INTEG_OK;

}

integ_status_t trapezoid(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
if (bad_args(f, &a, &b, &n, out))
{

return INTEG_ERR_BAD_ARGS;

19

}

const float h = (b - a) / (float)n;
float sum = 0.5f * (f(a, ctx) + f(b, ctx));

float x = a + h;
for (unsigned i = 1; i < n; ++i)
{

sum = sum + f(x, ctx);
x = x + h;

}

*out = sum * h;
return INTEG_OK;

}

integ_status_t simpson(integrand_f f, void *ctx, float a, float b, unsigned n,
float *out)

{
if (bad_args(f, &a, &b, &n, out))
{

return INTEG_ERR_BAD_ARGS;
}
if (n & 1u) /*n must be even*/
{

return INTEG_ERR_N_EVEN_REQUIRED;
}

float sum_odd = 0.0f;
float sum_even = 0.0f;
const float h = (b - a) / (float)n;

float x = a + h;
for (unsigned i = 1; i < n; ++i)
{

const float fx = f(x, ctx);
if (i & 1u)

sum_odd = sum_odd + fx;
else

sum_even = sum_even + fx;

20

x = x + h;
}

*out =
(h / 3.0f) * (f(a, ctx) + 4.0f * sum_odd + 2.0f * sum_even + f(b, ctx));

return INTEG_OK;
}

#include <math.h>
#include <stdio.h>

typedef struct
{

float a2, a1, a0;
} quad_t;

static float f_quad(float x, void *ctx)
{

const quad_t *q = (const quad_t *)ctx;
return (q->a2 * x * x) + (q->a1 * x) + q->a0;

}

static void run_one(const char *name, integrand_f f, void *ctx, float a,
float b, float exact, unsigned n)

{
float r = 0.0f, t = 0.0f, s = 0.0f;
integ_status_t stS;

midpoint(f, ctx, a, b, n, &r);
trapezoid(f, ctx, a, b, n, &t);

stS = simpson(f, ctx, a, b, n, &s);

printf("\n%s on [%.6f, %.6f], n=%u\n", name, a, b, n);
printf("Exact: %.9f\n", exact);
printf("Midpoint: %.9f err=%.9f\n", r, fabsf(r - exact));
printf("Trapezoid: %.9f err=%.9f\n", t, fabsf(t - exact));
if (stS == INTEG_OK)

printf("Simpson: %.9f err=%.9f\n", s, fabsf(s - exact));
else

21

printf("Simpson: not computed (n must be even)\n");
}

int main(void)
{

const quad_t q = {1.0f, 0.0f, 0.0f}; /*x^2*/

const quad_t q2 = {-1.0f, 3.0f, 50.0f}; /*x^2+3x+50*/

const quad_t q3 = {-9.0f, 3.0f, -100.0f}; /*-9x^2+3x-100*/

const quad_t q4 = {6.0f, -10.0f, 0.0f}; /*6x^2-10x*/

run_one("x^2", f_quad, (void *)&q, 0.0f, 1.0f, 1.0f / 3.0f, 10u);

run_one("x^2+3x+50", f_quad, (void *)&q2, -3.0f, 15.0f, 90.0f, 22u);

run_one("-9x^2+3x-100", f_quad, (void *)&q3, 12.0f, 15.0f, -5119.5f, 2u);

run_one("6x^2-10x", f_quad, (void *)&q4, -50.0f, -5.0f, 262125.0f, 6u);

return 0;
}

4.3.1 Results

22

5 Bibliography

[1] “Engineering at Alberta Courses Rectangle Method,” Jan. 2026. Avail-
able: https://engcourses-uofa.ca/books/numericalanalysis/
numerical-integration/rectangle-method

[2] “Engineering at Alberta Courses Trapezoidal Rule,” Jan. 2026. Avail-
able: https://engcourses-uofa.ca/books/numericalanalysis/
numerical-integration/trapezoidal-rule

[3] “Simpson’s Rule (Simpson’s 1/3 Rule) - Formula, Derivation, Ex-
amples,” Jan. 2026. Available: https://www.cuemath.com/
simpsons-rule-formula

23

https://engcourses-uofa.ca/books/numericalanalysis/numerical-integration/rectangle-method
https://engcourses-uofa.ca/books/numericalanalysis/numerical-integration/rectangle-method
https://engcourses-uofa.ca/books/numericalanalysis/numerical-integration/trapezoidal-rule
https://engcourses-uofa.ca/books/numericalanalysis/numerical-integration/trapezoidal-rule
https://www.cuemath.com/simpsons-rule-formula
https://www.cuemath.com/simpsons-rule-formula

	Declaration of self reliance
	Graphical representation of the software design
	Theoretical explanation of the relationships
	"integrate.h":
	"integrate.c":
	Common argument checking (bad_args)
	Midpoint / rectangle method (midpoint)
	Trapezoid method (trapezoid)
	Simpson 1/3 method (simpson)

	Performance-oriented aspects (embedded focus)

	Documentation of the reference examples used for testing
	Test integrand design
	Test runner (run_one)
	Reference examples in main()
	Results

	Bibliography

