Added Alpha-Beta-Pruning to Speed up AI to minimax

This commit is contained in:
2025-09-22 19:43:52 +02:00
parent d41723fae6
commit a4ea1a2ec8

View File

@@ -4,7 +4,7 @@ import random
class Minimax:
def minimax(self, current_field, is_maximizing, player1_char, player2_char):
def minimax(self, current_field, is_maximizing, player1_char, player2_char, alpha=float('-inf'), beta=float('inf')):
checkwin = self.check_win(current_field, player1_char, player2_char)
if checkwin == (1, 1): # Draw
return 0, 0, 0
@@ -20,15 +20,20 @@ class Minimax:
for k in range(0, len(current_field), 2):
if current_field[j][k] == " ":
current_field[j][k] = player1_char if not is_maximizing else player2_char
score = self.minimax(current_field, not is_maximizing, player1_char, player2_char)[0]
score = self.minimax(current_field, not is_maximizing, player1_char, player2_char, alpha, beta)[0]
current_field[j][k] = " "
if is_maximizing and score > best_score:
best_score = score
best_move = j, k
alpha = max(alpha, best_score)
elif not is_maximizing and score < best_score:
best_score = score
best_move = j, k
beta = min(beta, best_score)
if beta <= alpha:
break # Beta cutoff
if best_score == 0 and best_move == (0, 0): # is None:
empty_cells = [(j, k) for j in range(0, len(current_field), 2) for k in range(0, len(current_field), 2) if
@@ -40,7 +45,6 @@ class Minimax:
if best_move is None:
return 0, -1, -1 # No available moves
else:
# print('The next best move is:', best_move, "score: ", best_score)
return best_score, best_move[1], best_move[0]
def check_win(self, ifield, player1_char, player2_char):